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Abstract 

Polymer networks undergoing crosslinking reactions are studied using molecular 

dynamics simulations to investigate how the stress is influenced by the coupling between 

crosslinking and deformation. For networks crosslinked in the undeformed state, the 

modulus increases linearly with the crosslink density as expected from rubber elasticity 

theory.  When crosslinks are added to a network that was uniaxially deformed, the stress 

remains constant in accordance with the independent network hypothesis of Tobolsky. 

When the deformed network is subsequently released, permanent set is observed. Using 

the independent network hypothesis, together with the affine theory of rubber elasticity, a 

constitutive model is developed that accounts for the effect of the coupling between the 

crosslink density and strain histories of the network. The permanent set predictions from 

the affine model are higher than found from MD simulations. 
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I.   Introduction 

 The properties of polymer networks can change with time because of viscoelastic 

relaxation due to motions of chains on a variety of time scales. Chemical reaction can 

also occur in most organic polymer networks at high temperatures, or long times, 

resulting in permanent changes in the network topology with attendant changes in the 

physical properties with time. On very long time scales the kinetics of these various 

reactions, rather than the viscoelasticity, frequently controls the time dependence of the 

macroscopic properties.   Tobolsky1,2, followed by Berry, Scanlan, and Watson3, and 

Flory4 were the first to systematically study these “chemical relaxation” effects. 

Fundamentally different behavior results depending upon whether chemically-induced 

chain scission or crosslinking occurs. Chemical scission of bonds causes the effective 

crosslink density of the network and the equilibrium rubber elastic modulus, to decrease 

with time. Neglecting viscoelastic effects, the stress on a network undergoing scission 

reactions depends only1,5,6 on the current value of the crosslink density.  By contrast, the 

stress on a network when additional crosslinking (e.g. postcuring) takes place depends 

not only on the current value of the crosslink density, but also on the state of strain the 

sample1,2 was in when each crosslink was formed. One consequence of this 

crosslinking/strain history dependence is that the network can have a permanent set when 

the stress is removed.  Problems of this type have been treated with a general constitutive 

model by Wineman et al. 8 Recently Mott and Roland9 performed birefringence 

measurements on networks crosslinked in unstrained and strained states. Santangelo and 

Roland10 studied the effect of crosslinking history on the strain crystallization and fatigue 

resistance of elastomeric materials.  Despite the fact that chemical relaxation is very 
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important where elastomers are used for extended periods of time or at high temperature, 

surprisingly little research has been carried out in this area. In this investigation we 

employ molecular dynamics (MD) simulations to study the effect of crosslinking on the 

mechanical properties of elastomeric networks. 

 The complexity of the stress/strain properties of a crosslinking network can be 

illustrated by considering the following two experiments. First, consider a network well 

above the gel point, undergoing additional crosslinking reactions in the unstrained state. 

From rubber elasticity theory we expect that the equilibrium modulus would continue to 

increase linearly with the number of crosslinks that form (neglecting the formation of 

elastically ineffective crosslinks, eg. rings). Now consider a uniaxial stress relaxation 

experiment in which additional crosslinks are added to a strained network. Neglecting 

purely viscoelastic effects, how does the stress change as these new crosslinks are added? 

Tobolsky argued2 that as long as the network is held in the strained state, no change in 

stress should be detectable since the new network chains that form have their state of ease 

in the strained condition. With this hypothesis, Tobolsky constructed an “independent 

network” model to describe the permanent set that the network would experience when 

the stress is removed.  Intermittent and continuous stress relaxation and permanent set 

experiments1,7 tend to support the validity of Tobolsky’s hypothesis.  

 It is difficult to carry out well-controlled chemical relaxation experiments on 

elastomeric networks for two reasons. First it is hard to control the chemistry. Generally 

thermal or oxidative degradation leads to simultaneous scission and crosslinking making 

it problematical to isolate one process from the other. Secondly, because networks are 

infusible and insoluble, it is very difficult to characterize network structure and any 
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changes caused by chemical reaction. Very few characterization tools are available to 

monitor chemical degradation effects. Indeed, the stress relaxation behavior itself might 

be the most sensitive measure of any chemically induced changes in network structure. 

For these reasons, it is advantageous to use computer simulation, rather than laboratory 

experiments, as a tool to study the behavior of polymer networks.  Eichinger and 

coworkers used computer simulations to examine the gelation and topology of end-linked 

networks11-13 and random crosslinked systems.14,15 MD simulations have been used by 

Everaers and coworkers to test various rubber elasticity theories,16-19 and by Grest and 

coworkers to study gelation and vulcanization,20 and probe viscoelastic relaxation 

processes in networks.21,22  

 Our overall goal is to deduce an accurate constitutive model relating the stress to 

the strain and chemical reaction history of elastomeric networks.  Earlier work5,6 

addressed networks undergoing chain scission and led to a linear viscoelastic formulation 

of the constitutive equation. In the present investigation we focus on the more difficult 

problem of describing the constitutive model of a network undergoing crosslinking. In 

order to isolate the coupling between crosslinking and strain history we only consider 

quasi-equilibrium conditions where viscoelastic contributions to the stress have mostly 

relaxed out. Furthermore, there are no scission reactions and the only changes in the 

network structure arise from crosslinking events. 

 In this paper we first discuss the independent network hypothesis based on 

Tobolsky’s original ideas.1,2 This is followed by a description of how MD simulations are 

used to study the crosslinking of polymers and stresses on the resultant networks. Results 
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are then shown and discussed for networks crosslinked in the undeformed and deformed 

states, followed by simulations of permanent set. 

II.   Independent Network Model 

 For simplicity, in this work we will initially consider only one-dimensional, 

uniaxial strain. Generalization to arbitrary three dimensional strain fields is 

straightforward3x,4 but is not necessary to address the essential physics of the network. 

Tobolsky1,2 considered the case where an unstrained network, having ν o network chains, 

is uniaxially deformed from length Lo to L1. While in the deformed state, additional 

network chains ν1 are formed. Now consider what the stress would be on the network if 

the sample length is changed to L. Tobolsky argued that the network of constant volume 

V would behave like two independent networks: the original one havingν o  crosslinks, 

and the strained one with ν1 network chains. Using the affine model of rubber elasticity23 

Tobolsky took the uniaxial stress σ to be the superposition of the contributions from the 

two independent networks 
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Although Tobolsky1,2 considered only two independent networks, it is straightforward to 

generalize his result for an arbitrary length history Lo, L1, L2, … Ln. 
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where ν i is the number of network chains added while the network length was Li.  Berry, 

Scanlan and Watson3x and Flory4 demonstrated that the independent network result in 

Eqs 1 and 2 holds for Gaussian chains with the affine deformation assumption. Eq 2 can 
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be generalized further to the case where the length L(t) and number of network chains 

ν(t) vary continuously with time. 
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Since there are no elastically effective chains prior to gelation, we take ν(t) to include 

only those crosslinks added after the gel point. Hence the lower limit of the integral in Eq 

3 is the time t gel  required for gelation. 

 For a simple stress relaxation experiment, we have the strain history L = L ofor 

t gel ≤ t < t 0  and L = L1 for t o ≤ t < t1. For this case eq 3 becomes simply 
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for times t o ≤ t < t1. Thus, neglecting viscoelastic effects, the time dependent stress is 

predicted to depend only on the number of network chains ν o(t)  formed in the unstrained 

state. In general ν o  can decay with time for t > t o  due to scission reactions, although in 

the present simulations chain scission does not occur. From eq 4 we see that a 

consequence of the independent network model is that even though additional crosslinks 

ν1(t) are being added to the strained network, they do not contribute to the stress during 

the interval t o ≤ t < t1 when the network is held at L=L1. The ν1(t) crosslinks will come 

into play, however, if the length of the sample is changed further so that L=Ls for t ≥ t1. 

Eq 4 now predicts that 
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                   σ(t) =
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In particular, if we set σ(t) = 0 for t ≥ t1 then we can obtain the permanent set of the 

network as the length Ls the sample will return to after the stress is removed from the 

sample. The permanent set, measured in the so-called compression set experiment, is 

often used in industry24 as a figure of merit for the aging stability of rubber compounds. 

We define the permanent set as 

                                                   Ps =
Ls − L o

L1 − Lo

=
λs −1
λ1 −1

   (6) 

where λs and λ1are the corresponding deformation ratios. From eq 5 the permanent set is 

predicted to be 

                                           Ps =
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for the independent network model where λ1 = L1 /Lo is a measure of the extent of strain 

during the set experiment. The purpose of this work is to test the independent network 

hypothesis. In particular we will test both the stress relaxation and permanent set 

predictions in eqs. 5 and 7 using MD simulations in which the crosslink and strain 

variables can be precisely controlled. 

  It should be emphasized that we used the affine model of rubber elasticity in this 

independent network analysis. This is obviously an oversimplified theory. In particular 

one could envision that the interplay between elastically effective and ineffective chains 

could complicate the response of the network as new crosslinks are added, especially near 
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the gel point.  Other, more accurate, nonaffine rubber elasticity theories17,19 could, in 

principle, be employed in an analogous manner to the Tobolsky approach. 

III.   MD Simulations  

     Large scale, MD simulations were performed in a NVT ensemble using the LAMMPS 

parallel MD code25, modified to incorporate chemical reactions. Typically 36 - 80 

processors were used with a time step ∆t = 0.005τ where τ = σ LJ m/ε , m is the mass of 

a bead and σ LJ and ε are the Lennard-Jones parameters. The polymers were modeled 

using the standard bead-spring model26 in which monomers interact with a truncated 

Lennard-Jones potential 
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An additional interaction between adjacent beads along a chain  

                        
Vch (r) = −.5kBR0

2 ln 1− r /R0( )2[ ]   ,   r ≤ R0

= ∞   ,                                     r > R0

  (9) 

and between crosslinked monomers is used to give chain connectivity. Here 

R0 =1.5σ LJ is the maximum extension of a bond. We first equilibrated a melt of 500 

chains each having 500 monomers; periodic boundary conditions were employed with a 

density of ρσ LJ
3 = 0.85, σ LJ =1, and kT /ε =1.27 Four percent of the beads on each chain 

are randomly labeled as reactive sites, subject to the condition that the reactive sites are 

separated by at least two bonds. 

 After equilibration, the distances between all pairs of reactive sites are determined 

at time intervals of τx. Pairs of sites within a capture radius of  1.3σ LJ  are “bonded” with a 
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probability q after which the MD simulation is continued. Initially the periodic box is 

cubic with sides Lo. The network is deformed by changing the box length to λL o  in the x 

direction, and to L o / λ in the y and z directions so the volume remains constant. This 

uniaxial deformation occurs over a time period of 16τ. The average stress σ in the x 

direction is obtained from the simulation as the deviatoric part of the stress tensor28 

σ = 1+ ν P( ) Pxx − P( )≅ 3 Pxx − P( )/2, where P = Pii
i

∑ /3 is the hydrostatic pressure. The 

factor in σ involving Poisson’s ratio ν P is required because in our simulations the box is 

deformed at constant volume. For elastomeric materials Poisson’s ratio is very close to 

1/2. 

IV.   Results and Discussion 

 The crosslinked samples were prepared by turning on the crosslinking reactions 

until the sample is well above the gel point. The reaction rate was chosen to be small so 

that approximate quasi-equilibrium conditions were maintained during the gelation 

process. Control over the reaction rate, relative to the diffusion rate of the chains, was 

achieved through the variables τ x , the time between reactions, and the acceptance 

probability q. If the reactions are not diffusion-controlled, then we expect the crosslinking 

reactions occurring between reactive sites in our simulation to exhibit second-order 

reaction kinetics where 1− p( )−1 ∝ t . p is the extent of conversion of reactive sites defined 

as p = n(0) − n(t)[ ]/n(0), and n(t) is the number of reactive sites remaining at time t. In 

our simulations we set τ x = 10τ  and adjusted q in the range 10−5 to 10−3 so that second-

order kinetics approximately holds during gelation as can be seen from the inset in Figure 

1. The gel point was estimated by identifying the conversion pc where a cluster in the 
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primary box first connects to its images in adjacent periodic boxes in all three spatial  

directions. The gel point for this particular sample was estimated to be pc ~ 0.096 which 

occurred at t = 59.5τ  after the crosslinking reactions were started. This gel point is 

consistent with the previous MD studies of gelation by Grest and Kremer20 on finite size 

networks. 

 The crosslinking reaction kinetics is displayed at long times in the main part of 

Figure 1. It can be seen that second-order reaction kinetics hold out to approximately 

t =103τ  where p~0.60. For higher conversions, the reactions start to become diffusion 

controlled29 as the mobility of the reactive sites becomes small as expected when the 

network continues to cure. In Figure 2 the sol fraction of the network near the gel point is 

plotted. It can be seen from this plot that the fraction of chains not connected to the 

network rapidly approaches zero above the gel point. By the time that the conversion has 

reached p=0.40 in our sample, all the chains are part of the network and the sol fraction is 

zero. At this point the sample is taken to be representative of an elastomeric network and 

is the starting point for our test of the independent network approximation. The number 

of network chains depends on the conversion according to ν = p − pc( )n(0) . Due to the 

presence of intramolecular crosslinks and other network imperfections,14 not all of these 

network chains will be elastically active. 

 We first examined the effect of “postcuring” on unstrained networks. Various MD 

runs were carried out where additional crosslinking reactions are allowed to occur leading 

to samples betweenp = 0.45 and 0.85 . The kinetics of the postcuring process are shown 

in Figure 1. Each of these networks was uniaxially stretched to λ =1.5 over a time period 

of 16τ, allowed to equilibrate for 5000τ  without additional reaction, after which the 
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deviatoric stress σ was found by further averaging for an additional 5000τ . A typical 

stress relaxation curve is shown in Figure 3. It can be seen that after 400τ  most of the 

stress has relaxed and σ is approximately constant. This quasi-equilibrium stress, 

normalized by λ2 −1/λ( ), is shown in Figure 4 as a function of p − pc. As expected from 

rubber elasticity theory we find that the uniaxial stress σ is a linear function of the 

number of crosslinks which we expect to be proportional to p − pc. We emphasize that 

this holds when all the crosslinking occurs in the unstrained state. 

 Now consider the stress response when the network is postcured in the strained 

state. For the same sample networks that were prepared above by crosslinking in the 

unstrained state, the reactions were turned off and the samples uniaxially deformed to 

λ1 =1.5 and then allowed to equilibrate for10,000τ . The crosslinking is then turned on in 

the strained state and the deviatoric stress σ is then monitored as a function of 

conversion. According to the independent network hypothesis, no change in stress should 

be observed. The results of these simulations are plotted in Figure 5 for various initial 

conversions p0; it can be observed that the stress does not change within the estimated 

error of the stress calculation. For purposes of comparison, the stresses from  uniaxially 

deformed networks, crosslinked in the unstrained condition, and deformed to λ =1.5 

(from Figure 4) are shown in Figure 5 as the solid line. It is obvious that additional 

crosslinking ν1 in the deformed networks has very little or no effect on the stress 

compared to network chains ν 0  formed in the unstrained state. These results are general 

in the sense that no rubber elasticity model is invoked and are consistent with the 

independent network hypothesis.  
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 The additional crosslinking in the strained state will be manifested as the permanent 

set the network experiences when the deviatoric stress is removed. To measure the 

permanent set we systematically reduced the deformation ratio from λ1 =1.5 to λs and 

monitored the stress σ. Results are shown in Figure 6 for two networks that were initially 

deformed at p=0.45. One sample was postcured until p=0.85 after which the reactions 

were turned off, while no postcuring occurred in the other sample.  Three additional 

networks at p=0.65, 0.75, and 0.80 were also studied; although they are not shown in 

Figure 6 these results were intermediate as expected between the two extremes depicted 

in the figure. It can be seen that the stress varies approximately linearly with the new 

deformation ratio λs. From interpolation, we can identify the permanent set from the 

p=0.85 network as λs =1.15 , corresponding to σ = 0. The equivalent prediction from the 

independent network model, together with the affine model for rubber elasticity, is 

λs =1.18and is also shown in Figure 6.  

 The network with p=0.45 was the control sample. Since no crosslinks are added in 

the strained state it is expected to return to its original length ( λs =1.0 ) when released. It 

can be seen from Figure 6, however, that the MD result yields λs =1.05 . The failure of 

this network to completely recover in our simulations is probably due to residual 

viscoelastic effects that have not completely relaxed out over the strain history 

experienced by the network. This reveals the difficulties of extracting true equilibrium 

properties from MD simulations of networks. It should be added, however, that 

laboratory experiments are subject to similar limitations.   

 The permanent set Ps from the affine model calculated from eq 7 is plotted in 

Figure 7 as a function of ν1 /ν 0 for three different values of λ1. In these calculations we 
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estimated ν1 /ν 0 from the fraction of active sites that have reacted to form crosslinks 

according to 

                                                      ν1

ν 0

=
p1 − p0 − pc

p0 − pc

   (10)     

From eq 7 we observe that Ps = 0 and 1 in the limits where ν1 /ν 0 → 0  and ∞ 

respectively. The permanent set from MD simulations of the five networks studied are 

shown as points in Figure 7. Note that Ps ≅ 0.1 rather than 0.0 in our control sample 

because of viscoelastic effects. One would expect that similar effects would be present in 

the other networks as well so that the true equilibrium permanent set values would be 

lower than shown in Figure 7. Thus we conclude that the affine model predictions for 

permanent set are too high. This is not surprising since it is known that the affine model 

of rubber elasticity is not in quantitative agreement with either laboratory experiments23 

or computer simulations.17,19  

 Other more accurate rubber elasticity models could be used with the independent 

network hypothesis, provided one knows how the model parameters depend upon the 

crosslink density. The data and analysis presented here were restricted to the case of 

uniaxial deformation. The independent network/affine model can be generalized3x,4 to 

three dimensional strain fields with deformations λx ,λy,λz in the principal directions by 

employing a strain energy function W λx ,λy,λz( ). For the case of the affine model we 

have23 

                               W(λx ,λy,λz) =
νkBT
2V

λx
2 + λy

2 + λz
2 − 3( ) (11) 

The stresses σ x,σ y ,σ z in the principal directions are then given by 
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                                                  σ i = λi
∂W
∂λi

= L i
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 (12) 

subject to the incompressibility constraint that λxλyλz =1. From the independent network 

hypothesis, we propose that the affine strain energy function can generalized to 

incorporate the crosslinking/strain history by analogy with eq 3. 
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Eqs. 12 and 13 could then be applied to predict the stress response to a network 

undergoing crosslinking reactions in a three-dimensional strain field. 

V. Conclusions 

 In this investigation we used MD simulations of networks undergoing crosslinking 

reactions to test two predictions of the independent network hypothesis first proposed by 

Tobolsky1. When crosslinks are added to an undeformed polymer network, the uniaxial 

Young’s modulus increases with crosslink density as expected from rubber elasticity 

theory. However, we found that when crosslinks are added to a network held at a fixed 

uniaxial deformation, the stress did not change with crosslink density in accordance with 

the independent network hypothesis. This provides a general test because no additional 

assumptions are made. When the uniaxial stress is removed from our sample network, the 

network did not return to its initial length and a permanent set was observed. A nonzero 

permanent set is also a general consequence of the independent network hypothesis.  

 Using the independent network hypothesis, together with the affine rubber elasticity 

model, a constitutive equation was constructed (eq 3) to predict the uniaxial stress of a 

network for an arbitrary crosslink density/deformation history. The uniaxial permanent 

set prediction in eq 7 based on the affine model was found to predict higher permanent 



 16

sets than observed in our MD simulations. Although a plausible extension of the 

independent network model to three dimensions has been carried out3x,4 further validation 

should be carried out in more general strain fields. 

 In this paper and in the original Tobolsky work1 the affine model of rubber 

elasticity was used. Because of the well-known deficiencies of this model it is likely that 

the discrepancy between the predicted and simulated permanent set is due to the rubber 

elasticity model, and not the independent network approximation. It would be worthwhile 

to employ a more accurate rubber elasticity theory with the independent network 

approximation to deduce a more accurate constitutive model than given in eq 13. It 

should be pointed out, however, that the phantom network model of James and Guth,30 

where network junctions are completely free to fluctuate, would also lead to the same 

permanent set as in eq 7. This is because in both the affine and phantom models, the 

stress has the same deformation dependence and the models only differ in the 

coefficients. A more accurate permanent set prediction would possibly arise from the 

Mooney-Rivlin23 equation, constrained-junction theories,31,32  tube models,33 or more 

recent nonaffine models.28,34 Mott and Roland9 recently performed permanent set 

calculations based on a constrained junction model. 

 Finally it should be mentioned that our simulations used a coarse-grained, bead-

spring model description of a polymer network. In this model the average bond length is 

close to the nearest-neighbor distance between monomers in the bulk liquid. Thus when a 

crosslink is formed from a pair of nearby monomers, the monomer/monomer distance 

does not change appreciably. Hence the network does not undergo significant volumetric 

shrinkage. This may not be the case for a more atomistic model where bond lengths are 
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typically smaller than the site diameters.  In cases where there is appreciable shrinkage 

during crosslinking one might expect the independent network hypothesis to break down.   
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Figure Captions 

1. The fractional conversion of reactive sites p in the unstrained state. A straight line 

would be expected for a second-order kinetic process.  The inset shows the early 

time reaction during the gelation. 

2. The sol fraction as a function of the conversion of reactive sites near the gel point. 

The arrow identifies our estimate of the gel point at p=0.096. 

3. The time dependence of the stress (in units ofε /σ 3) of the network when the 

crosslinking is turned off and the sample is uniaxially deformed to λ =1.5 

( 0 ≤ t ≤16τ ) and then allowed to relax (15τ ≤ t ≤ 400τ ). Note that the stress has 

essentially reached a constant value after t = 400τ . 

4. The normalized stress σ (in units of ε /σ 3) for samples crosslinked in the 

undeformed state to various conversions p-pc.  The stress was obtained after the 

network was deformed to λ =1.5 and then allowed to relax. 

5. The normalized stress σ (in units of ε /σ 3) for networks crosslinked in the deformed 

state as a function of conversion p-pc. The networks were initially reacted to various 

levels of conversion p0 in the unstrained state. The networks were then deformed to 

λ =1.5 and relaxed after which the crosslinking reactions were again turned on. 

The estimated error bars are shown on one of the points. The solid line is the 

corresponding predictions from Figure 4 when all the crosslinking occurs in the 

undeformed state. The dashed lines are drawn as guides to the eye. 

6. The stress (in units of ε /σ 3) on a network that has reacted to p = 0.45 in the 

undeformed state, reacted further to p = 0.85 (filled circles) in the deformed state 

λ =1.5, and then released to various deformations λs shown. The open circles 
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represent a control simulation where no additional crosslinking takes place in the 

deformed state. The permanent set is identified where the stress is interpolated to 

zero. The triangles are the predictions from Eqs. 6 and 7. 

7. The permanent set predicted from the affine model in eq 7 as a function of the 

crosslinking ratio ν1 /ν 0 in the deformed and undeformed states for three values of 

λ1. The points represents the permanent set estimated from our MD simulations and 

should be compared with the solid curve where λ1 = 1.5. 
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